Active Sensing via Learning

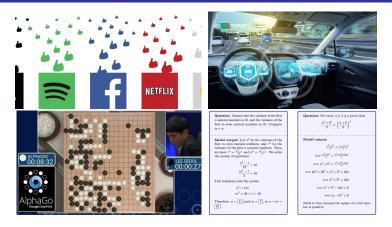
Wei Yu

Joint work with Tao Jiang, Foad Sohrabi, Han Han, David Zhongze Zhang

Department of Electrical and Computer Engineering University of Toronto

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQで

Machine Learning



- Why are neural networks so powerful?
 - Universal functional mapping by pattern matching;
 - Design neural network architectures to explore the problem structure;
 - Incorporating vast amount of data and problem instances;
 - Highly parallel and scalable implementation.
- What are the roles of machine learning for wireless communications?

- The fundamental limits of communications are governed by information theory.
- Channel capacity is the maximum mutual information, which is a function of the channel p(y|x) and the input distribution p(x):

$$C = \max_{p(x)} I(X; Y).$$

- The overall communication problem can be broken down into the following parts:
 - Use source coding to convert the source into bits.
 - Use pilots to estimate the channel p(y|x).
 - Use adaptive modulation, beamforming, power control for optimizing p(x).
 - Use channel coding to transmit the bits.

• The traditional communication system design paradigm is model-based.

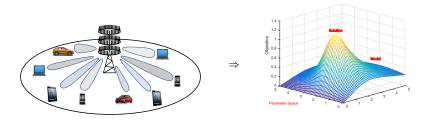
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 重 = のQ@

• Channel estimation requires assumption on the model:

- More parameters make model more accurate, but makes model harder to estimate.
- Longer pilot makes estimation easier but consumes valuable coherence time/bandwidth.
- Loss function for channel estimation is typically arbitrary (e.g., square-error).
- There is no universal theory about which model is the most suitable.

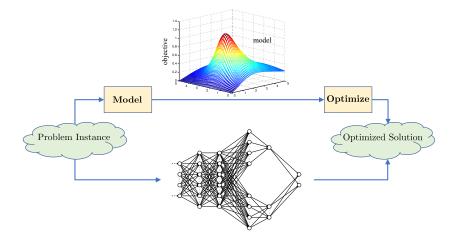
• Mathematical optimization requires precise problem formulation:

- The same problem can be parameterized in many different ways.
- The holy grail of optimization is to transform a problem into convex form.
- There is no universal theory about how to best transform the optimization landscape.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

Role of Machine Learning in Wireless Air Interface



• This Talk: A Data-Driven Approach to Communications and Sensing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Learn to Beamform

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⁰ 6/37

• How to obtain channel state information (CSI) for massive MIMO systems?

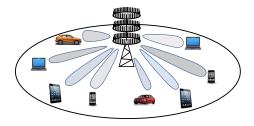


Figure: Cellular base-station with a large-scale antenna array

• Time-Division Duplex (TDD) Massive MIMO:

- · Channel reciprocity can be assumed.
- Uplink pilot transmission followed by CSI estimation at BS and downlink transmission.

• Frequency-Division Duplex (FDD) Massive MIMO:

- Channel reciprocity does not necessarily hold in different frequencies.
- Downlink pilot transmission followed by CSI estimation and feedback at the users.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Channel Estimation, Feedback and Precoding in FDD Massive MIMO

Conventional downlink FDD wireless system design involves:

- Independent channel estimation at each UE based on downlink pilot.
- Independent quantization and feedback of each user's channel to the BS.
- Multiuser precoding at the BS based on channel feedback from <u>ALL</u> the users.

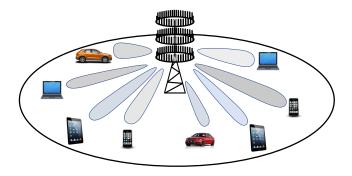
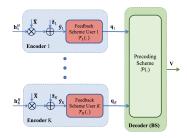


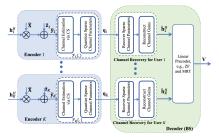
Figure: Cellular base-station with a large-scale antenna array

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 重 = のQ@



Single-user channel feedback for multiuser precoding is NOT optimal.

FDD downlink precoding as a DSC problem.

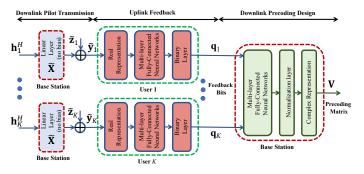


The conventional scheme amounts to a separate source coding strategy.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

- The FDD feedback/precoding problem is a distributed source coding (DSC) problem.
- Much more efficient distributed feedback scheme can be designed using machine learning.

Graph Neural Network for Distributed Channel Estimation and Compression



- Downlink Pilot Transmission: Modelled by a linear neural layer followed by additive noise.
- Uplink Feedback: Modelled by an *R*-layer DNN with *B* binary activation neurons at the last layer: $\mathbf{q}_k = \text{sgn}\left(\mathbf{W}_R^{(k)}\sigma_{R-1}\left(\cdots\sigma_1\left(\mathbf{W}_1^{(k)}\bar{\mathbf{y}}_k + \mathbf{b}_1^{(k)}\right)\cdots\right) + \mathbf{b}_R^{(k)}\right)$.
- Downlink Precoding Design: Modelled by a *T*-layer DNN with normalization activation function at the last layer: $\mathbf{v} = \widetilde{\sigma}_T \left(\widetilde{\mathbf{W}}_T \widetilde{\sigma}_{T-1} \left(\cdots \widetilde{\sigma}_1 \left(\widetilde{\mathbf{W}}_1 \mathbf{q} + \widetilde{\mathbf{b}}_1 \right) + \cdots \right) + \widetilde{\mathbf{b}}_T \right).$
- Sum rate maximization can be cast as the following learning problem:

$$\max_{\tilde{\mathbf{X}}, \left\{\Theta_{\mathsf{R}}^{(k)}\right\}, \Theta_{\mathsf{T}}} \mathbb{E}_{\mathsf{H}, \tilde{\mathbf{z}}} \left[\sum_{k} \log_{2} \left(1 + \frac{|\mathbf{h}_{k}^{\mathsf{H}} \mathbf{v}_{k}|^{2}}{\sum_{j \neq k} |\mathbf{h}_{k}^{\mathsf{H}} \mathbf{v}_{j}|^{2} + \sigma^{2}} \right) \right], \tag{1}$$

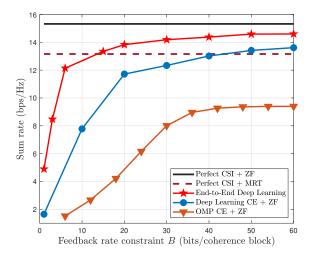


Figure: Sum rate achieved by different methods in a 2-user FDD system with number of BS antennas M = 64, Pilot length L = 8, number of paths $L_p = 2$, number of users K = 2, and SNR $\triangleq 10 \log_{10}(\frac{p}{2}) = 10$ dB.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ● ●

Active Sensing via Learning

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⁰ 12/37

Active Beam Alignment for TDD mmWave System

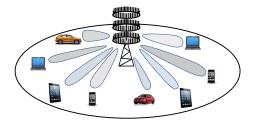
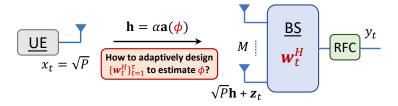


Figure: Cellular base-station with a large-scale antenna array.

- Motivation: mmWave massive MIMO for enhanced mobile broadband.
- Estimating high-dimensional channel from low-dimensional observations is challenging:
 - Fully digital beamforming: Requires one high-resolution RF chain per antenna element.
 - Hybrid beamforming: Analog beamformer with low-dimensional digital beamforming.
- Initial Beam Alignment: How to find channel direction in an RF chain limited system?

Sensing Architecture with Hybrid Beamforming

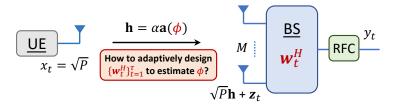


- A BS with M antennas and a single RF chain serves a single-antenna user
- The user transmits pilot; the BS tries to estimate the channel.

イロト イポト イヨト イヨト

÷.

Sensing Architecture with Hybrid Beamforming



- A BS with M antennas and a single RF chain serves a single-antenna user
- The user transmits pilot: the BS tries to estimate the channel. ۵
- Due to the RF chain limitation, the BS must sense the channel through analog combiners:

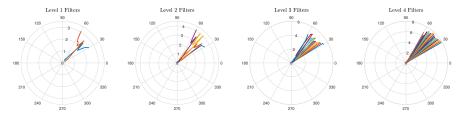
$$y_t = \mathbf{w}_t^H \mathbf{h} \mathbf{x}_t + \mathbf{w}_t^H \mathbf{z}_t = \sqrt{P} \alpha \ \mathbf{w}_t^H \mathbf{a}(\phi) + n_t, \tag{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- \mathbf{w}_t is the sensing (combining) vector in time frame t with $\|\mathbf{w}_t\|^2 = 1$
- $\alpha \sim \mathcal{CN}(0,1)$ is the fading coefficient,
- $\phi \in [\phi_{\min}, \phi_{\max}]$ is the angle of arrival (AoA), $\mathbf{a}(\phi) = \begin{bmatrix} 1, e^{j\pi \sin \phi}, ..., e^{j(M-1)\pi \sin \phi} \end{bmatrix}^T$ is the array response vector,
- n_t ~ CN(0, 1) is the effective noise.

Traditional Approach: Bisection in Angle Domain

 We can select the sensing vector from a pre-designed codebook that minimizes the expected MSE objective, e.g., the codebook contains the following 30 filters bisecting in angle domain.

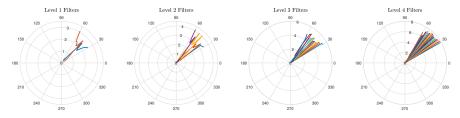


• Hierarchical beamforming codebook [Alkhateeb, Ayach, Leus, and Heath, 2014].

э.

Traditional Approach: Bisection in Angle Domain

 We can select the sensing vector from a pre-designed codebook that minimizes the expected MSE objective, e.g., the codebook contains the following 30 filters bisecting in angle domain.



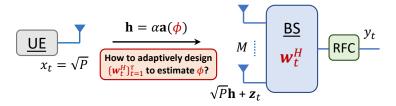
• Hierarchical beamforming codebook [Alkhateeb, Ayach, Leus, and Heath, 2014].

... but bisection can be sensitive to noise.

イロト イヨト イヨト イヨト

э.

Initial Alignment as a Sequential Decision Problem



• Initial Beam Alignment: The BS can optimize the quality of AoA estimation by designing w_t at each time frame, possibly sequentially in an adaptive manner, i.e.,

$$\mathbf{w}_{t+1} = \widetilde{\mathcal{G}}_t \left(y_{1:t}, \mathbf{w}_{1:t} \right), \quad \forall t \in \{0, \dots, T-1\}.$$
(3)

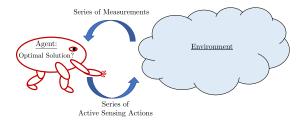
• The final AoA estimate is obtained as a function of all past observations as:

$$\hat{\phi} = \widetilde{\mathcal{F}}\left(y_{1:T}, \mathbf{w}_{1:T}\right). \tag{4}$$

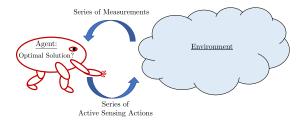
◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 - のへで

• The goal is to design $\mathbf{w}_{1:T}$ sequentially as function of $y_{1:T}$ so far to minimize $\mathbb{E} \left| \left(\hat{\phi} - \phi \right)^2 \right|$.

• This is a high-dimensional sequential decision problem!

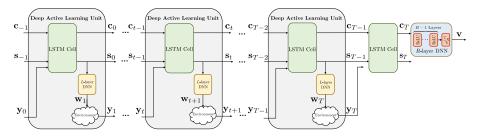


- The active sequential learning problem naturally arises in many inference, sensing, and control settings, e.g., tree-search, sequential design of experiments, the multi-armed bandit.
- Problems involve adaptive estimation/control based on sequential sensing of environment.
- Analytic solutions seem impossible.
- Numerical solutions are computationally complex and in general hard to obtain.



- The active sequential learning problem naturally arises in many inference, sensing, and control settings, e.g., tree-search, sequential design of experiments, the multi-armed bandit.
- Problems involve adaptive estimation/control based on sequential sensing of environment.
- Analytic solutions seem impossible.
- Numerical solutions are computationally complex and in general hard to obtain.

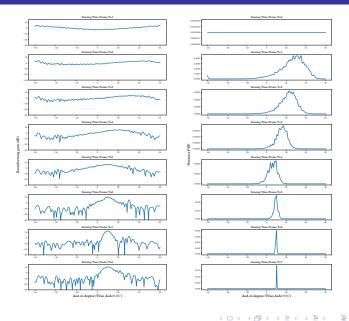
How about using machine learning to find a solution efficiently?



- We use a recurrent neural network with LSTM cells to model the active sensing problem.
- The overall end-to-end sensing architecture is a very deep neural network.
- We train the overall DNN by using stochastic gradient descent to minimize the MSE.

イロト イヨト イヨト イヨト

Posterior Distribution of AoA and Optimized Sensing Vectors

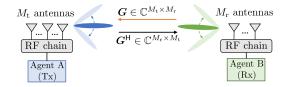


A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 🖌 🔺 프 🕨

Two-Sided Beam Alignment

Two-Sided Beam Alignment



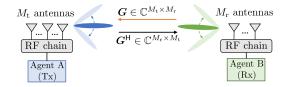
• Received signal at the Rx

$$r = \boldsymbol{w}_{\rm r}^{\sf H} \boldsymbol{G}^{\sf H} \boldsymbol{w}_{\rm t} x + \boldsymbol{n}, \tag{5}$$

- $x \in \mathbb{C}$ is the intended data symbol with $\mathbb{E}[|x|^2] = P$.
- $\boldsymbol{w}_t \in \mathbb{C}^{M_t}$ is the beamforming vectors at the Tx with $\|\boldsymbol{w}_t\|_2 = 1$.
- $\boldsymbol{w}_{\mathrm{r}} \in \mathbb{C}^{M_{\mathrm{r}}}$ is the beamforming vectors at the Rx with $\|\boldsymbol{w}_{\mathrm{r}}\|_2 = 1$.
- n ~ CN(0, σ₀²) is the additive Gaussian noise.

• Goal: Aligning the beams $\{w_t, w_r\}$ to maximize the beamforming gain $|w_r^H G^H w_t|^2$.

Two-Sided Beam Alignment



• Received signal at the Rx

$$r = \boldsymbol{w}_{\rm r}^{\rm H} \boldsymbol{G}^{\rm H} \boldsymbol{w}_{\rm t} \boldsymbol{x} + \boldsymbol{n}, \qquad (5)$$

- $x \in \mathbb{C}$ is the intended data symbol with $\mathbb{E}[|x|^2] = P$.
- $\boldsymbol{w}_t \in \mathbb{C}^{M_t}$ is the beamforming vectors at the Tx with $\|\boldsymbol{w}_t\|_2 = 1$.
- $\boldsymbol{w}_{r} \in \mathbb{C}^{M_{r}}$ is the beamforming vectors at the Rx with $\|\boldsymbol{w}_{r}\|_{2} = 1$.
- n ~ CN(0, σ₀²) is the additive Gaussian noise.
- Goal: Aligning the beams $\{w_t, w_r\}$ to maximize the beamforming gain $|w_r^H G^H w_t|^2$.
- Given perfect CSI G, the optimal beamforming vectors are

$$\boldsymbol{w}_{t}^{\star} = \boldsymbol{u}_{\max} / \|\boldsymbol{u}_{\max}\|_{2}, \tag{6a}$$

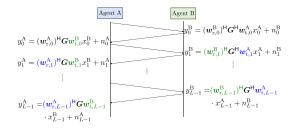
$$\boldsymbol{w}_{r}^{\star} = \boldsymbol{v}_{max} / \|\boldsymbol{v}_{max}\|_{2}, \tag{6b}$$

Here, u_{max} and v_{max} are respectively the left and the right singular vectors associated with the largest singular value of the matrix G.

𝒫𝔅 21/37

Ping-Pong Pilot Protocol

We propose an active learning framework with ping-pong pilot transmission.



In the ℓ -th transmission round:

• Agent A sends a pilot x_{ℓ}^{A} to agent B:

$$\boldsymbol{y}_{\ell}^{\mathrm{B}} = (\boldsymbol{w}_{\mathrm{r},\ell}^{\mathrm{B}})^{\mathrm{H}} \boldsymbol{G}^{\mathrm{H}} \boldsymbol{w}_{\mathrm{t},\ell}^{\mathrm{A}} \boldsymbol{x}_{\ell}^{\mathrm{A}} + \boldsymbol{n}_{\ell}^{\mathrm{B}}, \quad \ell = 0, \cdots, L-1,$$
(7)

2 Agent B sends back a pilot x_{ℓ}^{B} to agent A:

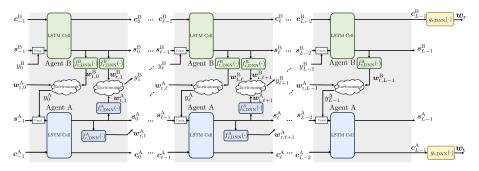
$$\boldsymbol{y}_{\ell}^{\mathrm{A}} = (\boldsymbol{w}_{\mathrm{r},\ell}^{\mathrm{A}})^{\mathsf{H}} \boldsymbol{G} \boldsymbol{w}_{\mathrm{r},\ell}^{\mathrm{B}} \boldsymbol{x}_{\ell}^{\mathrm{B}} + \boldsymbol{n}_{\ell}^{\mathrm{A}}, \quad \ell = 0, \cdots, L-1,$$
(8)

イロト イヨト イヨト イヨト

After L rounds of pilot transmission, each of the transceivers obtains L measurements of the channel, which can be utilized to design their own data transmission beamforming vectors.

ъ

Deep Active Sensing



Agents A and B respectively utilize the historical $\{y_i^A\}_{i=0}^{\ell}$ and $\{y_i^B\}_{i=0}^{\ell}$ to design their transmit/receive sensing beamformers:

$$\boldsymbol{w}_{t,\ell+1}^{A} = f_{t,\ell}^{A} \left(\{ y_{i}^{A} \}_{i=0}^{\ell} \right), \qquad \qquad \boldsymbol{w}_{r,\ell+1}^{A} = f_{r,\ell}^{A} \left(\{ y_{i}^{A} \}_{i=0}^{\ell} \right), \qquad (9)$$

$$\boldsymbol{w}_{t,\ell}^{B} = f_{t,\ell}^{B} \left(\{ y_{i}^{B} \}_{i=0}^{\ell} \right), \qquad \qquad \boldsymbol{w}_{r,\ell+1}^{B} = f_{r,\ell}^{B} \left(\{ y_{i}^{B} \}_{i=0}^{\ell} \right), \qquad (10)$$

After L rounds of pilot transmission, the beamformers for data transmission are designed as:

$$\boldsymbol{w}_{t} = \boldsymbol{g}_{t} \left(\{ \boldsymbol{y}_{i}^{A} \}_{i=0}^{L-1} \right), \qquad \boldsymbol{w}_{r} = \boldsymbol{g}_{r} \left(\{ \boldsymbol{y}_{i}^{B} \}_{i=0}^{L-1} \right),$$
(11)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The overall objective is to maximize $\mathbb{E}\left[|\boldsymbol{w}_{r}^{\mathsf{H}}\boldsymbol{G}^{\mathsf{H}}\boldsymbol{w}_{t}|^{2}\right]$.

Interpretation of Learned Active Sensing Strategy

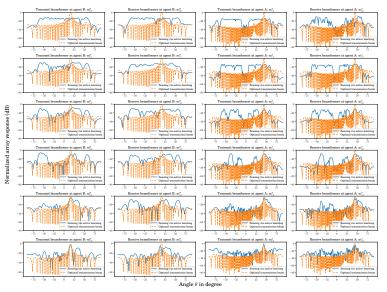
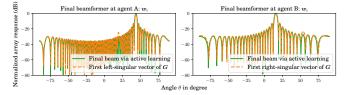
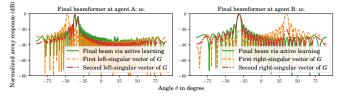


Figure: Learned sensing beamforming patterns for a specific mmWave channel realization.

3



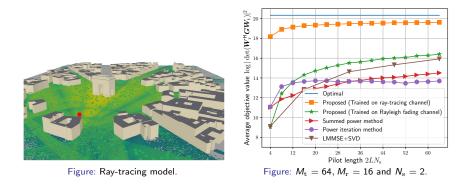
(a) Example of beamformers matching the strongest singular-vector direction



(b) Example of beamformers matching the second singular-vector direction

Figure: Two examples of learned data transmission nbeamforming patterns after 6 ping-pong pilots.

イロト イヨト イヨト イヨト



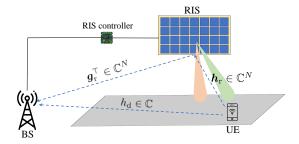
- The model trained with site-specific ray-tracing channel achieves the best performance.
- The model trained with Rayleigh fading channel can generalize to the ray-tracing scenario.
- Here, we assume fully digital system with two data streams, trained using GRU.

Localization and Beam Tracking

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < C 27/37

RIS-Assisted Active Uplink Localization

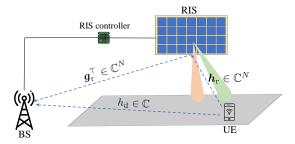
- A single user (UE) repeatedly transmits pilot symbols
- The base station (BS) receives the pilots through reflection by the RIS
- The BS determines the location of the user based on the received pilots



イロト イヨト イヨト イヨト

RIS-Assisted Active Uplink Localization

- A single user (UE) repeatedly transmits pilot symbols
- The base station (BS) receives the pilots through reflection by the RIS
- The BS determines the location of the user based on the received pilots



The idea is to adaptively configure the RIS:

- The uplink RIS configurations are sequentially designed by the BS as a function of previous measurements to minimize localization error.
- As a result, the RIS can focus the beam progressively to locate the user over time as more measurements become available.

- The goal is to estimate the unknown UE position \boldsymbol{p} based on T observations $\{y_t(\boldsymbol{\theta}_t)\}_{t=0}^{T-1}$.
- The design of RIS configuration is a function of historical measurements.
- The estimated UE position \hat{p} is a function of all T historical observations.

$$\begin{array}{ll} \underset{\{q_t(\cdot)\}_{t=0}^{T-1}, f(\cdot)}{\min} & \mathbb{E}\left[\|\hat{\boldsymbol{p}} - \boldsymbol{p}\|_2^2\right] \\ \text{subject to} & |[\boldsymbol{\theta}_t]_n| = 1, \ \forall n, t, \\ & \boldsymbol{\theta}_{t+1} = q_t(\{y_\tau\}_{\tau=0}^t), \ t = 0, \cdots T - 1, \\ & \hat{\boldsymbol{p}} = f(\{y_t\}_{t=0}^{T-1}). \end{array}$$

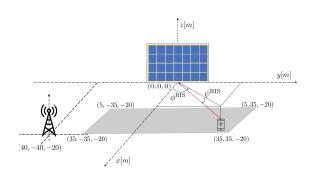
• The problem amounts to optimizing the functions $\{q_t(\cdot)\}_{t=0}^{T-1}$ and $f(\cdot)$.

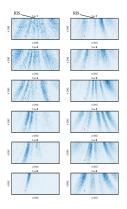
Proposal:

• To use an LSTM network to automatically construct state vectors from the historical measurements and to extract temporal features and long-term dependencies in these observations to facilitate the design of reflection coefficients.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Single-RIS for Localization



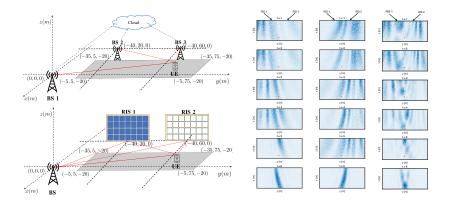


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ● ●

- The BS is located at $\boldsymbol{p}^{\mathrm{BS}} = (40m, -40m, -20m)$
- An 8×8 RIS is located at $\boldsymbol{p}^{\text{RIS}} = (0m, 0m, 0m)$
- The unknown user locations p are uniformly generated within a rectangular area on the x-y plane ($20 \pm 15m$, $0 \pm 35m$, -20m).
- Diagram shows the beamforming patterns of active sensing (left) vs. non-active (right)

Multiple RISs for Triangulation

- Localization becomes more accurate if multiple anchor points are deployed.
- Instead of deploying extra base-stations, a more cost-effective solution is to use RISs.



The RIS reflection patterns of left panel, right panel, and combined patterns are shown.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ● ●

Active Beam Tracking Using RIS

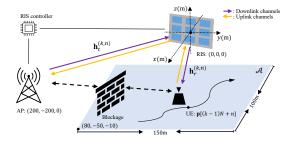


Figure: RIS-assisted mobile communication system

- Goal: Maintaining beam alignment through RIS for enhanced mobile communications.
- Assumption: Time-division duplex (TDD) system with channel reciprocity.
- Active Beam tracking: Adaptively set RIS coefficients to learn to focus on the users:
 - Estimating high-dimensional channels based on the low-dimensional received pilots is challenging

イロト イポト イヨト イヨト

• Frequently "start-from-scratch" estimation will lead to significant overhead.

э.

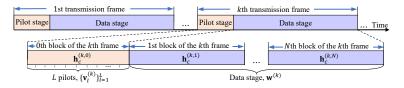


Figure: Frame structure of the proposed transmission protocol.

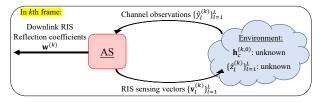
- The time-varying channels are split into sufficiently small fixed-length blocks:
 - The channels within each block is assumed to remain constant;
 - The channels are correlated across the blocks due to the mobility of the UE.
- The ℓ th pilot received by the AP in the pilot stage (0th block) of the kth frame:

$$\widehat{y}_{\ell}^{(k)} = \left(\mathbf{h}_{t}^{(k,0)}\right)^{\top} \operatorname{diag}\left(\mathbf{v}_{\ell}^{(k)}\right) \mathbf{h}_{r}^{(k,0)} x_{\ell}^{(k)} + \widehat{z}_{\ell}^{(k)} = \sqrt{P_{u}} \left(\mathbf{v}_{\ell}^{(k)}\right)^{\top} \mathbf{h}_{c}^{(k,0)} + \widehat{z}_{\ell}^{(k)} , \qquad (13)$$

- The ℓ th RIS sensing vector for in the kth frame: $\mathbf{v}_{\ell}^{(k)} = [e^{i\theta_1}, \cdots, e^{i\theta_{N_r}}]^{\top}$ with $\theta_i \in [0, 2\pi)$.
- $\mathbf{h}_{c}^{(k,0)} \triangleq \operatorname{diag}(\mathbf{h}_{t}^{(k,0)})\mathbf{h}_{r}^{(k,0)} \in \mathbb{C}^{N_{r}}$ is the cascaded channel in the 0th block of the *k*th frame.
- The idea is to exploit the temporal channel correlation by designing the best sensing vector v.

Active Sensing for Beam Tracking with RIS

Update the RIS configurations for both sensing and communications in a sequential fashion.



• In the pilot stage of the kth frame, the RIS sensing vectors are designed as:

$$\{\mathbf{v}_{\ell}^{(k)}\}_{\ell=1}^{L} = \mathcal{G}^{(k)}\left(\left\{\{\widehat{y}_{\ell}^{(j)}\}_{\ell=1}^{L}\right\}_{j=1}^{k-1}, \left\{\{\mathbf{v}_{\ell}^{(j)}\}_{\ell=1}^{L}\right\}_{j=1}^{k-1}\right)$$
(14)

• $\mathcal{G}^{(k)}: \mathbb{C}^{L(k-1)} \times \mathbb{C}^{N_r L(k-1)} \to \mathbb{C}^{N_r L}$ is the active sensing scheme in the *k*th frame.

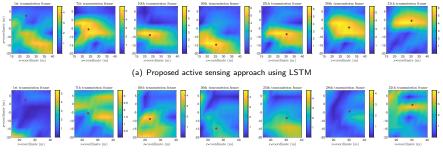
• Using the newly received pilots, design $\mathbf{w}^{(k)}$ for the N blocks in the subsequent data frame:

$$\mathbf{w}^{(k)} = \mathcal{F}^{(k)}\left(\left\{\{\widehat{y}_{l}^{(j)}\}_{l=1}^{L}\right\}_{j=1}^{k}, \left\{\{\mathbf{v}_{l}^{(j)}\}_{l=1}^{L}\right\}_{j=1}^{k}\right)$$
(15)

• $\mathcal{F}^{(k)} : \mathbb{C}^{Lk} \times \mathbb{C}^{N_r Lk} \to \mathbb{C}^{N_r}$ is the downlink alignment scheme in the *k*th frame.

• Goal: Maximizing the downlink data rate

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ ● E • • ○ Q ○ 34/37



(b) DNN-based benchmark (fixed sensing vector learned from channel statistics)

Figure: Instantaneous downlink rate around the position of the UE obtained in different transmission frames. UE transmits L = 10 pilots in each pilot stage, each frame contains N = 30 blocks, $P_u = P_d = 15$ dBm, $N_r = 64$.

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 - のへで

Conclusions

- Machine learning enables a data-driven approach for communications and sensing tasks:
 - Data-driven design of massive MIMO beamformers without explicit channel estimation.
 - Data-driven design of active sensing strategies for beam alignment, beam tracking, and localization.
- Designing neural network architecture to fit the problem structure is the key to success.
 - GNN is able to capture the spatial relationship of the BS, the RIS, and the mobile users.
 - LSTM network is able to capture the temporal correlations across multiple sensing stages and to track the time-varying nature of the channel by summarizing the state of the system.

Data-Drive Methods are the Future of Optimization!

イロト イヨト イヨト イヨト

э.